Chapter 9: Household Circuits

1. Definition of a Circuit

- A circuit is a closed loop through which electricity flows.
- Basic components: **current source**, **conductors**, and a **load**.

2. Power Transmission (From Generating Station to Consumer)

- Electricity is generated at 11 kV and then stepped up to 132 kV for efficient longdistance transmission.
- Stepped down progressively:
 - \circ 132 kV → 33 kV → heavy industries
 - o 33 kV \rightarrow 11 kV \rightarrow light industries, city sub-stations
 - \circ 11 kV \rightarrow 220 V \rightarrow homes
- Why AC is used instead of DC?
 - o AC can be easily **stepped up/down** using transformers, reducing energy loss.

3. Power Distribution to a House

- Electricity reaches homes via **overhead/underground cables** with **three wires**:
 - o Live (L): supplies current
 - o Neutral (N): return path
 - o **Earth** (**E**): safety
- Key components:
 - o Company Fuse: High-rated fuse at the pole
 - o **kWh Meter**: Measures energy consumption
 - o Main Switch/MCB: Controls and protects household circuits

4. House Wiring (Ring System)

- Appliances connected in parallel to a ring circuit.
- Each has a **separate switch and fuse**.

Advantages:

- 1. Cost-effective
- 2. Isolated appliance protection
- 3. Uniform plugs and sockets
- 4. Easy to add new appliances

5. Fuse

- Safety device that protects from excess current.
- Works on the **Heating Effect of Current**.
- Made of **lead-tin alloy** (low melting point, high resistance).

Fuse depends on:

- Current rating (I²)
- Radius of wire (r⁻³)
- *Not* on wire length

6. MCB (Miniature Circuit Breaker)

- Replaces fuse in modern setups.
- Trips quickly (within 25 ms) in case of faults.

7. Switches

• Devices to control current flow.

Types:

- Single Pole: Disconnects live wire only
- **Double Pole**: Disconnects live and neutral wires

Important:

• Always connect switch in the **live wire** for safety.

8. Earthing (Grounding)

• Local Earthing: Near kWh meter for safety

• Appliance Earthing: Prevents electric shock in case of insulation failure

9. Three-Pin Plug

• **Top pin**: Earth (longest)

Left pin: NeutralRight pin: Live

• Ensures earth connection first for safety.

10. Colour Coding of Wires

Wire	Old Colour	New Colour
Live	Red	Brown
Neutral	Black	Light Blue
Earth	Green	Green/Yellow

11. High Tension Wires

- Used for heavy current/voltage.
- Low resistance, large surface area to prevent overheating.

12. Safety Precautions

- Prevent **fire** (use proper wires/fuses)
- Prevent **electric shock**:
 - No wet hands
 - Proper insulation
 - Use earthing and fuses
 - Use proper rated MCBs

